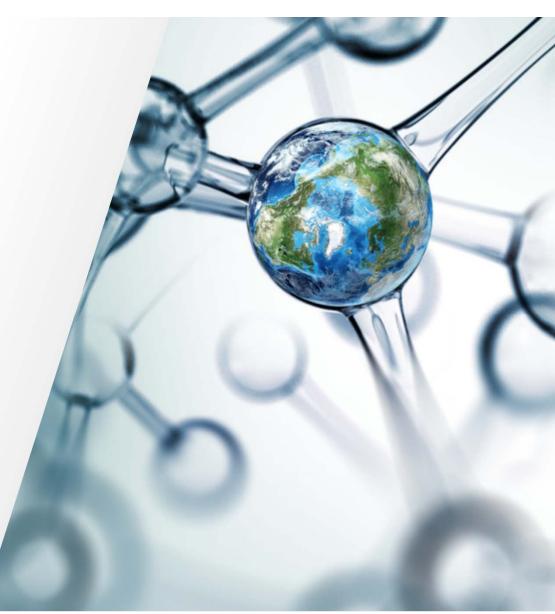
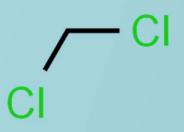


A Rapid Method for the Analysis of Air Toxics Based on US EPA TO-15


Terry Jeffers

1

Senior Application Scientist August 9, 2021



What are HAPs?

- HAPs are pollutants that are known or suspected to cause serious health effects or adverse environmental effects.
- Examples include:

Benzene Found in gasoline

Dichloromethane Used as a solvent and paint stripper

Background

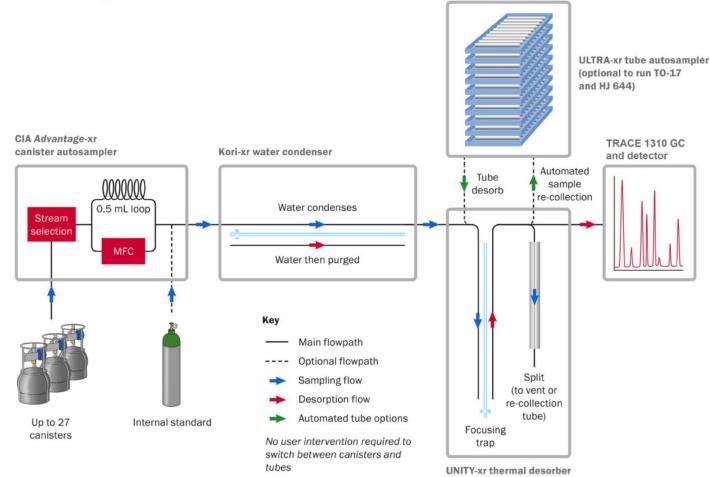
- US EPA Method TO-15 is established method for hazardous air pollutants (HAPs).
- Utilises canister sampling method and thermal desorption gas chromatography mass spectrometry (TD-GC-MS).
- Ingress of water can negatively affect results.
- Standard run times limit sample throughput.
- Other challenges include the wide range of sample compound temperatures and varying temperature and humidity of samples.

Objectives

- Demonstrate an alternative chromatographic approach to speed up analysis compared to US EPA TO-15.
- Demonstrate the combined use of an innovative trap-based water removal device as part of a robust TD-GC-MS system.
- Demonstrate both typical and 0.5 50 ppb Calibration data for US EPA TO-15

Equipment

Sample introduction



Markes[™] CIA Advantage[™] canister sampler coupled to a Markes[™] Kori-xr[™] water removal device and a Markes[™] Unity-xr[™] thermal desorber

Sample analysis

Thermo Scientific[™] ISQ[™] 7000 mass spectrometer (MS) coupled to Thermo Scientific[™] TRACE 1310 gas chromatograph (GC)

Sample flow path

Sample Preparation Method conditions

ThermoFisher SCIENTIFIC

Markes™ CIA Advantage-xr™		
Canister sampling volume	Up to 1000 mL	
Water removal	Kori-xr™	
IS loop fill	1 min	

Cold trap, "TO-15/TO-17 Air toxics"
-30 °C to 300 °C
120 °C
0.1 min
1.0 min at 50 mL/min
50 mL/min

GC-MS Method conditions

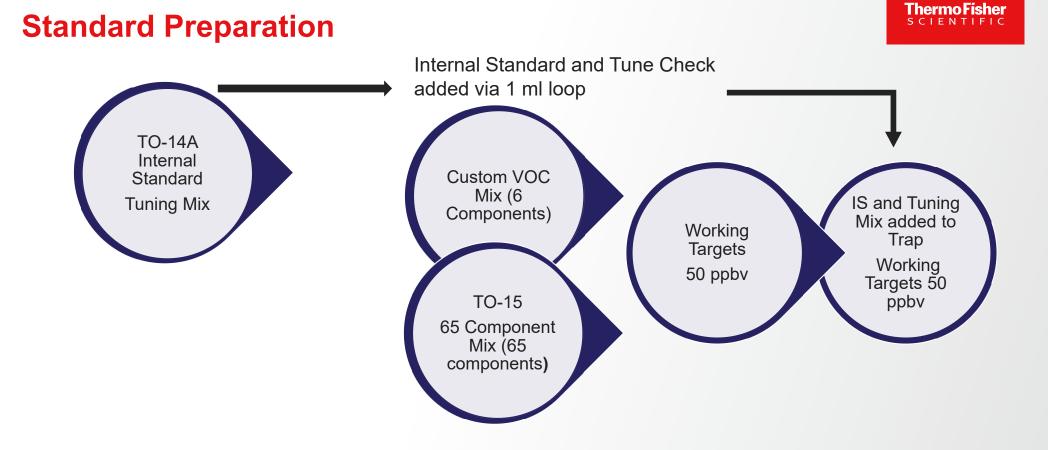
Thermo Scientific™ TRAC	E 1310 GC
Inlet temperature	260 °C
Injection mode	Splitless, 3 min
Split flow	20 mL/min
Carrier gas flow	He, 0.8 mL/min
GC oven temperature program	Initial 35 °C for 3 min, Ramp 14 °C/min to 100 °C, Ramp 20 °C/min to 230 °C, hold for 4 min
Total run time	18 min
Thermo Scientific [™] ISQ 7	000 mass spectrometer
Transfer line temperature	230 °C
Mode/range	Full scan, 35-260 amu
lon source	Thermo Scientific [™] ExtractaBrite [™]
Ion source temperature	310 °C
Ionisation mode	EI @ 70 eV
Solvent delay	1.09 min
Dwell/scan time	0.15 s
Emission current	25 μΑ

Terry.Jeffers@thermofisher.com | 9 - August - 2021

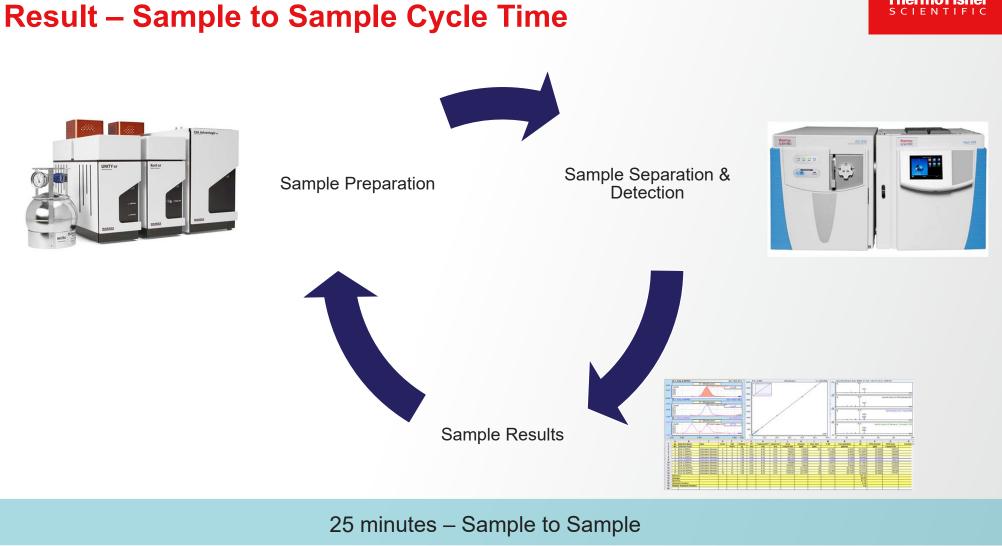
8

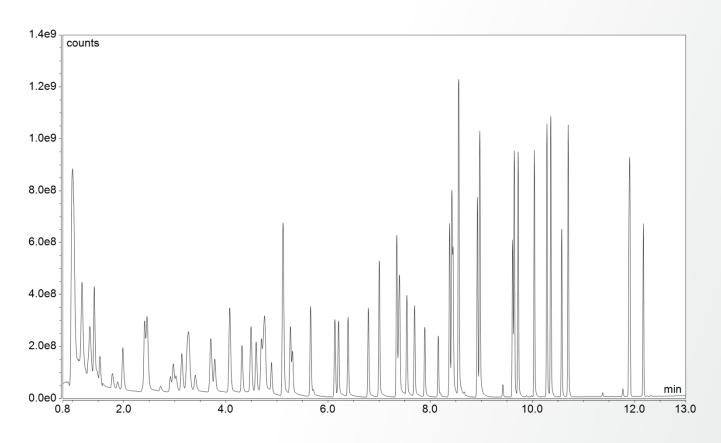
Thermo Scientific ISQ 7000 MS - Never Vent

What is NeverVent technology?

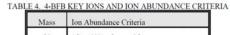

Increase GC-MS Uptime with the vacuum probe interlock (VPI)

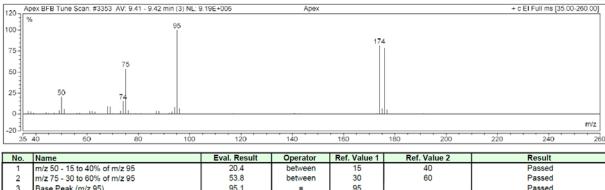
Thermo Fisher


Through the VPI, no need to vent mass spec system for extracting the wireless ExtractaBrite ion source

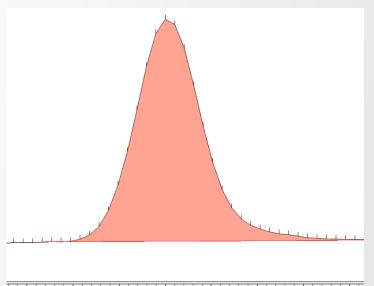

Extends the capability of the Vacuum Probe Interlock (VPI) design with the newly introduced source plug, V-Lock

- Bromochloromethane, 1,4-Difluorobenzene, Chlorobenzene-d5 used as Internal Standards
- 4-bromofluorbenzene Tune Mix


Result - Chromatography

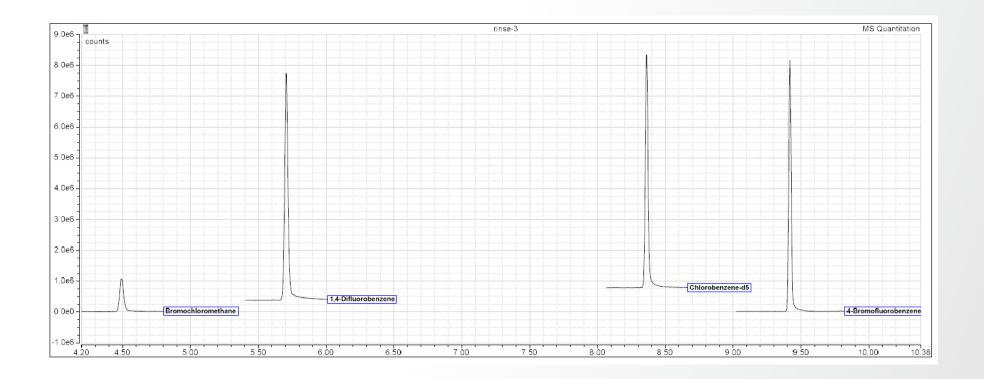

Separation of 50 ppb standard achieved in under 13 minutes

Result – BFB Tune Check



50	15 to 40% of mass 95
75	30 to 60% of mass 95
95	Base Peak, 100% Relative Abundance
96	5 to 9% of mass 95
173	<2% of mass 174
174	>50% of mass 95
175	5 to 9% of mass 174
176	>95% but< 101% of mass 174
177	5 to 9% of mass 176

1	m/z 50 - 15 to 40% of m/z 95	20.4	between	15	40	Passed
2	m/z 75 - 30 to 60% of m/z 95	53.8	between	30	60	Passed
3	Base Peak (m/z 95)	95.1	=	95		Passed
4	m/z 96 - 5 to 9% of m/z 95	6.4	between	5	9	Passed
5	m/z 173 - Less than 2% of m/z 174	0.6	<	2		Passed
6	m/z 174 - Greater than 50% of m/z 95	81.4	>	50		Passed
7	m/z 175 - 5 to 9% of m/z 174	7.5	between	5	9	Passed
8	m/z 176 - 95 to 101% of m/z 174	96.3	between	95	101	Passed
9	m/z 177 - 5 to 10% of m/z 176	6.8	between	5	10	Passed
					Overall Result:	Passed


> 20 Scans across Peak

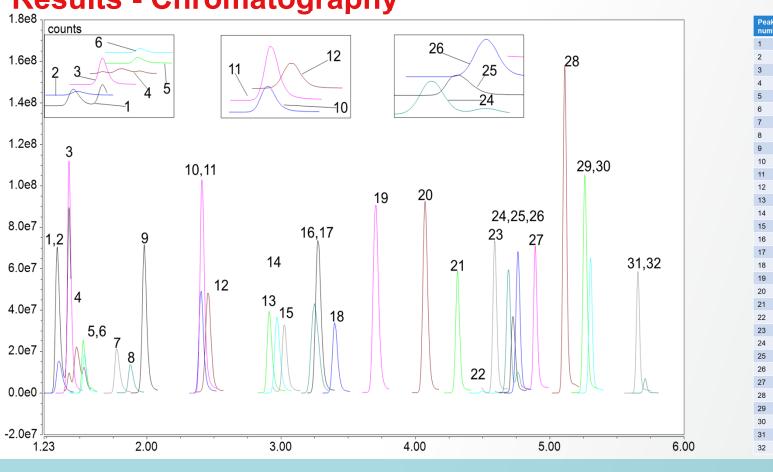
9.3750 9.3875 9.4000 9.4125 9.4250 9.4375 9.4500 9.4625

Tune Check – Top 3 scans across apex of peak

Result – Internal Standard Chromatography

Internal Standards and Tuning Component

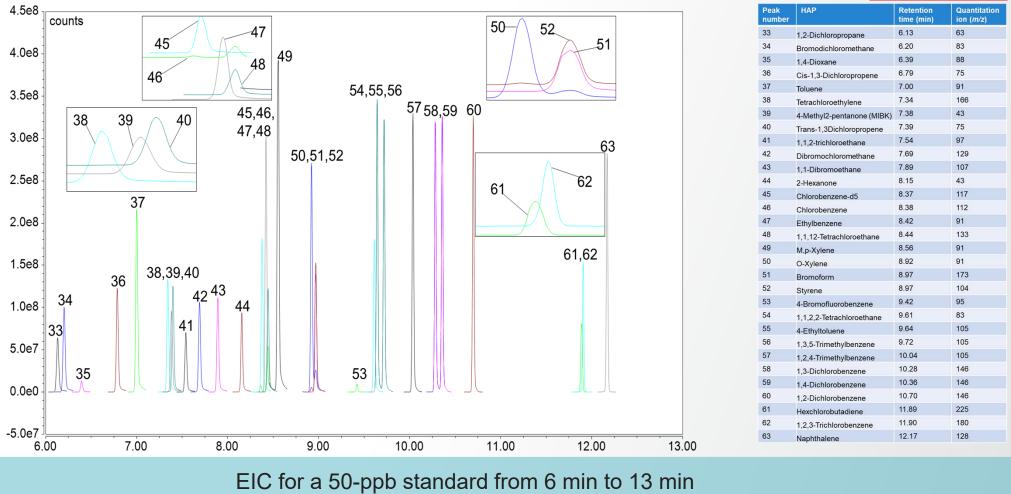
Result – Internal Standard Stability


Injection Name	Area Counts	Area Counts	Area Counts
	MS Quantitation	MS Quantitation	MS Quantitation
	Bromochloromethane	1,4-Difluorobenzene	Chlorobenzene-d5
Blank-1	48866	236955	215257
ICAL 0-5PPbv	37589	200913	192575
ICAL 1-00PPbv	40130	199230	194095
ICAL 2-00PPbv	44729	201277	189526
ICAL 3-00PPbv	46003	206774	184438
ICAL 4-00PPbv	47968	210992	189314
ICAL 5-00PPbv	47224	205001	181838
ICAL 8-00PPbv	49643	218012	187905
ICAL 20-00PPbv	48914	218198	190552
ICAL40-00PPbv	48219	212215	182758
ICAL 50-00PPbv	47111	216549	177721
rinse 1	45987	207411	177078
rinse-2	46395	207897	178401
rinse-3	45286	207740	178508
MDL -1	34067	182574	173666
MDL -2	33658	177160	174686
MDL -3	33827	176371	174661
MDL -4	34406	176554	177583
MDL -5	35442	184933	181716
MDL -6	35523	182928	182437
MDL -7	35703	185743	182678
MDL -8	35878	190579	187870
Validation-1	47590	218333	194671
Validation-2	48807	215986	198117
Validation-3	49122	224642	199111
Validation-4	51248	231040	209124
Validation-5	50179	226201	207141
Validation-6	49717	224492	204090
Validation-7	52020	231826	213275
Average	43836	206156	188993
Standard Deviation	6368	17851	11978
% RSD	15%	9%	6%

% RSD

- Bromochloromethane = 15 %
- 1,4-Difluorobenzene = 9 %
- Chlorobenzene-d5 = 6 %

Internal Standard Area Count Stability

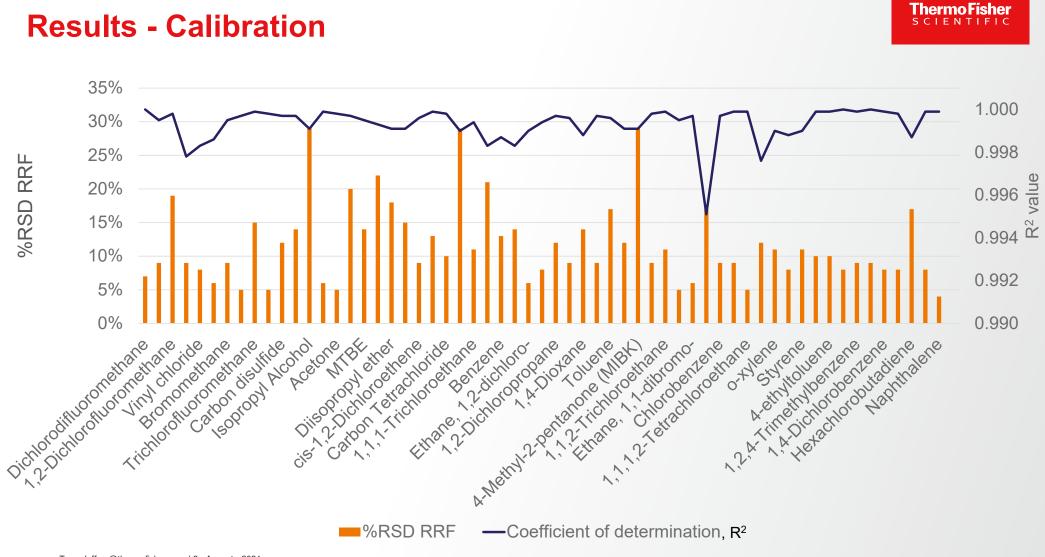


Results - Chromatography

EIC for a 50-ppb standard from 1.23 min to 6 min

Thermo Fisher s c I E N T I F I C

Peak number	НАР	Retention time (min)	Quantitation ion (<i>m/z</i>)
1	Dichlorodifluoromethane	1.33	85
2	1,1-Difluoroethane	1.35	65
3	1,2-Dichlorofluoromethane	1.42	135
4	Chloromethane	1.48	50
5	Vinyl chloride	1.53	62
6	1,3-Butadiene	1.53	54
7	Bromomethane	1.78	94
8	Chloroethane	1.88	64
9	Trichlorofluoromethane	1.98	101
10	1,1-Dichloroethene	2.42	61
11	Carbon disulfide	2.42	76
12	Freon 113	2.47	101
13	Isopropyl Alcohol	2.93	45
14	Methylene chloride	2.98	49
15	Acetone	3.04	43
16	Hexane	3.25	57
17	MTBE	3.30	73
18	tert-butanol	3.41	59
19	Diisopropyl ether	3.70	45
20	ETBE	4.07	59
21	cis-1,2-Dichloroethene	4.31	61
22	Bromochloromethane	4.50	128
23	Chloroform	4.59	83
24	Carbon Tetrachloride	4.69	119
25	Tetrahydrofuran	4.73	42
26	1,1,1-Trichloroethane	4.76	97
27	2-Butanone	4.89	43
28	Benzene	5.12	78
29	TAME	5.26	73
30	1,2-dichloro-ethane	5.30	62
31	Trichloroethylene	5.66	130
32	1,4-Difluorobenzene	5.71	114

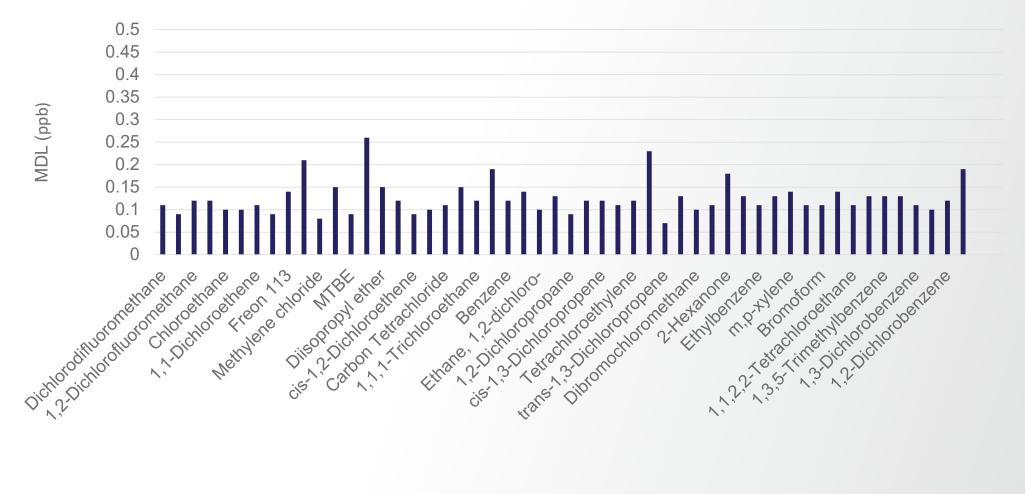

SCIENTIFIC

Results - Chromatography

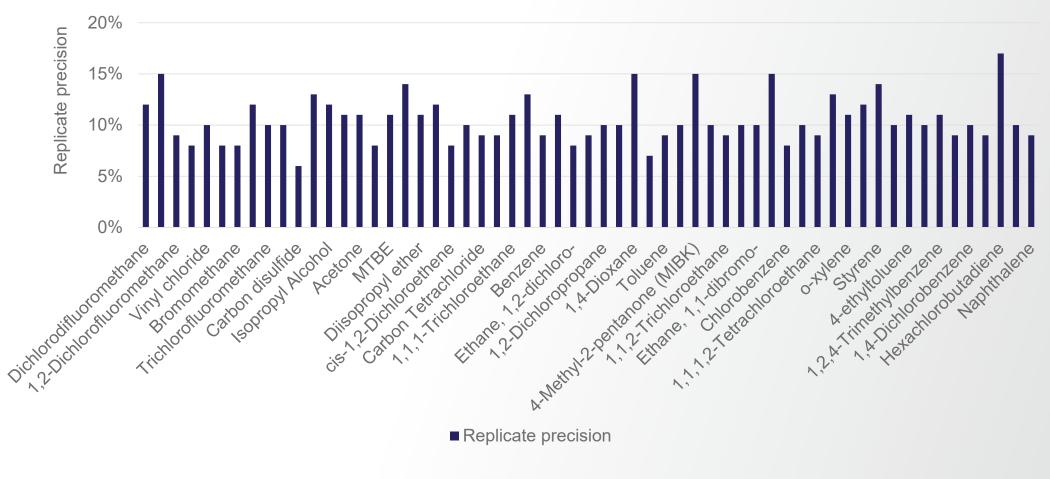
Thermo Fisher SCIENTIFIC

Result – Method Validation

- Multi point Calibration
 - 10 calibration points
 - 0.5 50 ppbv
- Minimum Detection Limit Study
 - 0.5 ppbv standard
- Initial Demonstration of Capability (IDC)
 - 8.0 ppbv standard



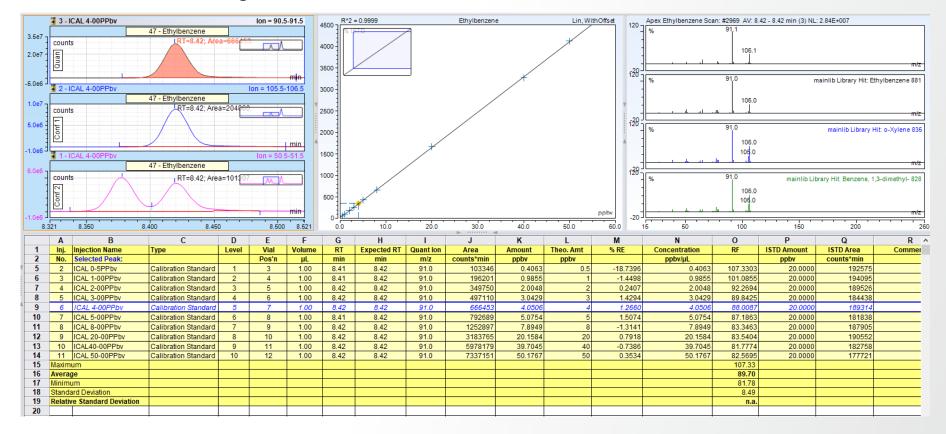
Results - Calibration


Terry.Jeffers@thermofisher.com | 9 - August - 2021

19

Results – Sensitivity

Thermo Fisher SCIENTIFIC **Results** – **Replicate** precision


21

Thermo Fisher

Thermo Fisher SCIENTIFIC

Chromeleon CDS Benefits

• Data Review – at a glance

Application Notes 10729

thermoscientific

APPLICATION NOTE

A rapid method for the analysis of air toxics based on US EPA TO-15

Authors: Terry Jeffers¹, David Lee² and Dwain Cardona³ ¹Thermo Fisher Scientific, West Palm Beach, FL, USA ²Thermo Fisher Scientific, Runcorn, UK ³Thermo Fisher Scientific, Austin, TX, USA

Keywords: US EPA, VOCs, TO-15 volatiles, air toxics, gas chromatography, single quadrupole mass spectrometry, selected ion monitoring, thermal desorption gas chromatography mass spectrometry, TD-GC-MS, canister, environmental lab, air analysis, ambient air monitoring

Goal

The following application demonstrates an alternative chromatographic approach to US EPA Method TO-15 for the rapid determination of toxic organic compounds in ambient air using a combined TD-GC-MS solution from Markes International and Thermo Fisher Scientific.

Method linearity, RRF variation, method detection limit (MDL), and precision were assessed to evaluate method performance.

Introduction

US EPA Method TO-15 is an established method used for the measurement of hazardous air pollutants (HAPs) also known as air toxics. This subset of volatile organic compounds (VOCs) is collected and analyzed using

10729

canister sampling methods and thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Despite the popularity of canister sampling, maintaining system integrity and obtaining consistent results can be difficult for routine air analysis labs. Ingress of water to the analytical instrument can negatively impact analyte response and repeatability, as well as reduce the lifetime of the column and detector. In addition to this, traditional canister preconcentration technologies are challenged by the wide ranges of sample compound concentrations and by the varying temperatures and humidity at sampling locations.

In this application note, we demonstrate the combined use of an innovative trap-based water removal device, alternative column choice, and a robust TD-GC-MS configuration to overcome the challenges experienced in the analysis of volatile air toxics in accordance with US EPA Method TO-15 and provide advantages in laboratory productivity.

23

Conclusions

- Alternative column dimensions reduces analysis times, increasing sample throughput. •
- Effective chromatographic separation and accurate quantitation of 60 HAPs in under 13 minutes is ٠ achieved
- Sample to Sample run time is 25 minutes •
- Excellent linearity was obtained over a concentration range of 0.5 to 50 ppb, comfortably meeting the ٠ requirements of <30% RRF RSDs.
- Replicate precision for all target compounds was below the requirement of <25% from n=7 replicates ٠
- Sensitivity assessment demonstrated that lower method detection limits were achieved than required by • the published method

Thank you

Thermo Fisher SCIENTIFIC

25